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Motivation Experiments and Validation
« A key component for ADAS is fast free-space detection to determine QUALITIATIVE (Fig.3): The disparity Stixel World (left) is generally
where the vehicle can drive in dynamic environments. correct but has trouble with rain. The small FCN without online tuning
« Afundamental challenge is that traffic scenes come in a (middle) fails to generalize to exceptional cases (cyclist, canal). With our
« wide variety (urban/rural, highway/city-center) under online tuning method (right), that same FCN outperforms both methods.

+ varying imaging conditions (good/bad weather, day/night). [, ol |‘ -- lW‘ 4 '| B Offline Fon | o g |' ) R oniine Fon |

* Therefore, we propose a system that is fast, flexible and robust.
¢ We achieve this by tuning a small FCN [1,2] online (while driving) on

weak labels generated from disparity analysis.

Methodology
We tune an FCN [1,2] while driving using weak labels from disparity
analysis. The FCN is pre-trained offline on similar traffic scenes for faster

convergence. Our full system diagram is in Fig.1, more details in [5].
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Fig.3: Left to right: Stixel World; offline trained FCN; online tuned FCN.
Green: true free space; Red: missed obstacles; Blue: false obstacles
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+ Generate weak labels (Fig.2) : performance 40x faster _ Training iterations (x1000)
Fig.4: FCN training convergence.
» Stereo camera with disparity estimation )
« Analyze with disparity Stixel World [3] Conclusions
Tune the ECN with the new data Our self-supervised online trained FCN outperforms [3] and [4] on our

public data (265 frames). Our method provides

« Segment free space in current frame (Fig.3)

¢ robust free-space segmentation in

« difficult imaging conditions, while relying on a

« small and fast FCN, by focusing on

¢ asmall amount of weakly-labeled but currently relevant data.

Fig.2: Left to right: dark input ihage, noisy disparity signal, corresponding weak
labels for online training. Manual groundtruth in red. References
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Training on automatically generated weak labels provides similar results

as training on manual labels, reducing the need of large scale annotation.
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