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Abstract 

We present a computer vision system for intelligent vehicles that distinguishes 

obstacles from roads by exploring online and self-supervised learning. It uses 

geometric information, derived from stereo-based obstacle detection, to obtain weak 

training labels for an SVM classifier. Subsequently, the SVM improves the road 

detection result by classifying image regions on basis of appearance information. In 

this work, we experimentally evaluate different image features to model road and 

obstacle appearances. It is shown that using both geometric information and Hue-

Saturation appearance information improves the road detection task. 

1 INTRODUCTION 

Vehicles are relying increasingly on computer vision to ensure a safer way of driving. 

Examples are Advanced Driver Assistance Systems (ADAS), such as lane departure warning 

and pedestrian detection. These and related technologies will be improved and extended in 

the future, leading to autonomously driving vehicles. Such intelligent vehicles have the 

potential to significantly reduce traffic congestions, accidents, and pollution levels.  

In this work, we focus on computer vision methods necessary to distinguish obstacles from 

drivable surfaces. Our approach is designed to work with asphalt roads, paved roads, country 

roads, or any other drivable terrain. This is enabled by online and self-supervised learning of 

the visual appearance of drivable surfaces versus obstacles. In contrast to [2], it does not 

depend on human-annotated train images, and is fully adaptive to different road surface 

types, environments, weather and lighting conditions. An obstacle detection system based on 

a stereo camera [1] provides a basis for reliably separating obstacles from roads by exploring 

a weak labeling, which is then improved by a Support Vector Machine (SVM) classification 

using color features. A similar approach was used in [3], where the focus was purely on 

outdoor terrain in which the differences between drivable surfaces and obstacles are 

typically more pronounced than in urban (gray world) environments, which is our main 

focus. In [4] also a similar approach was used, building on the assumptions that the road in 

front of the vehicle is always drivable, has uniform appearance and differs significantly from 

obstacles. By combining [3] and [4] and improving it with [1] a system is created applicable 

to the urban environment. 

The complete system is described in Section II and III. The results of our experiments are 

provided in Section IV and finally Section V brings forward our conclusions and 

recommendations. 



 

2 SYSTEM OVERVIEW 

Our vision-based drivable surface (i.e. road) detection system with its key processing blocks 

is depicted in Fig. 1. Its general concepts are discussed here. Detailed descriptions of its key 

processing blocks are provided in Section III. 

 

The input to the system is a continuous binocular video stream. It keeps a buffer of the past 

60 frames In-60,…,In-1 to online learn an appearance model that is used to classify pixels in 

the current frame In as being part of a drivable surface or part of an obstacle. 

The classifier used by the system is a two-class SVM. It requires a set of training examples 

to learn a decision surface separating the training samples of the two classes {road, 

obstacles}. This decision surface is then used to classify new samples. In contrast to the 

typical usage of SVM, where training samples are obtained by manually annotating images, 

in our system the training samples are automatically obtained from the stereo-based obstacle 

detection processing block. 

This stereo subsystem estimates disparity maps from which the depth of pixels can be 

obtained. From this geometric information, the local slope of surfaces is calculated. If the 

slope exceeds a certain threshold, pixels are labeled as obstacles [1]. As stereo-based depth 

estimation suffers from many artifacts, the obstacle labeling is not perfect. Therefore, we use 

these (weak) labels, automatically obtained from stereo geometric information, to train an 

SVM on appearance-based information. The appearance model for pixels is a histogram 

representing the color or gradient distribution in a local rectangular area around each pixel. 

In this work different color spaces and histogram creation strategies are experimentally 

evaluated. 

3 ROAD DETECTION WITH SELF-SUPERVISED LEARNING 

The online learning and classification pipeline starts with generating training masks, using 

the obstacle detection and road Region Of Interest (ROI) processing blocks, as depicted in 

Fig. 1. The next step is feature extraction followed by online SVM training and finally 

classification. These four key steps in the system are described in detail below. 

 

Fig. 1. Overview of the integrated road and ostacle detection system. 

 

 



 

3.1 Training mask 

Training masks assign labels {road, obstacle, unknown} to pixels to facilitate creating 

training examples for the online self-supervised SVM classifier. The training mask creation 

exists of two processing blocks, obstacle detection and road ROI, which are combined into 

one mask for every train frame. The obstacle map provided by the obstacle detection 

processing block is eroded to reduce the number of pixels that are wrongly labeled as 

obstacles. The road ROI is based on the assumption that the surface directly in front of the 

car is always drivable, unless the obstacle detector determines otherwise. All parts not 

specifically designated as obstacle or road are given the unknown label. In Fig. 2 an example 

frame with its obstacle map and its training mask is depicted. 

3.2 Feature extraction 

The feature extraction processing block has two functions. Its first function is to provide 

unlabeled training samples for the SVM training processing block. The labels for the training 

samples are obtained from the training masks. Next to that, it provides features for the road 

classification processing block.  

The feature extraction processing block divides frames in (non-overlapping) square blocks 

of 17-by-17 pixels. For each of these blocks it computes a histogram, i.e. the image feature, 

as a representation of their appearance. In this work, we consider different histogram content 

and creation methods. 

In order to fill the histograms we need to assign an Index (I) and Magnitude (M) to each 

pixel on basis of its (multidimensional) value. The index (I) is used to determine the 

corresponding bin (B) of the pixel in the histogram, which can be a non-linear mapping. The 

Magnitude (M) of a pixel is its contribution to its corresponding bin in the histogram. For 

color-based histograms, the value of a pixel is used as the Index (I) and the Magnitude (M) 

is defined as 1. For histograms of gradients (HOG), the orientation of the gradient is used as 

the Index (I) and the Magnitude (M) of a pixel is the magnitude of its gradient. 

A histogram can be created by mapping each feature space dimension to a histogram 

dimension, thereby forming a multidimensional histogram. An alternative is to concatenate 

all feature space dimensions into one histogram dimension, thereby forming a 1-D 

histogram. The potential benefit of a multidimensional histogram is that it can capture 

correlations between feature space dimensions. In a 1-D histogram all individual feature 

spaces are modeled as being independent of each other. With this we gain computational 

 
 (a) (b)        (c)        (d) 

Fig. 2. Example of training mask generation. (a) The rectified left image of the stero input  frame. (b) The 

obstacle map (white is obstacle and black is non-obstacle) generated by the obstacle detection processing 

block. (c) The training mask containing the weak labels. In this mask black is a  weak obstacle label, white is 

a weak road label, and gray is unknown. (d) Training mask as an overlay on the rectified left image. 

 



 

efficiency, but we potentially lose valuable statistical information. In this work we 

experiment with both approaches. 

Another aspect of histogram creation that we evaluate is the mapping from pixel indexes (I) 

to histogram bins (B). For this we compare a simple linear mapping with an adaptive data 

dependent method. The adaptive method can be seen as an offline dimension reduction 

strategy [6]. Its aim is to only have meaningful histogram bins. This is performed by taking 

random pixels out of the dataset and determining the bin boundaries such that every bin has 

an equal (non-zero) number of pixels in it. 

Finally, the histograms are normalized. For 1-D histograms that are made up of multiple 

feature space dimensions, the separate histograms of each feature dimension are first 

normalized separately, after which the complete histogram is normalized. This ensures that 

training of the SVM classifier starts with a situation in which each independent feature space 

is equally weighted. An overview of all histogram based feature spaces that we use for our 

experiments are provided in Table I. They are a combination of gradient histograms and 

histograms over the color spaces: RGB, HSV, YIQ (NTSC) and subspaces of these. 

TABLE I LIST OF TESTED FEATURE COMBINATIONS 

3.3 Training 

The goal of the training processing block is to train a SVM, online and self-supervised, that 

can be used to classify pixels as being part of a road or an obstacle. A training sample 

consists of a feature and a label. Its feature is a histogram computed over a 17-by-17 pixel 

block and its label is the value {road, obstacle, unknown} of the center pixel of the block in 

the automatically obtained training mask. Blocks for which their label is unknown are 

ignored during training. 

The goal of SVM is to fit a hyper plane in such a way that two classes {road, obstacle} are 

maximally separated by the hyper plane [7]. In this work we experiment with a linear SVM 

and a Radial Basis Function (RBF-) SVM. The linear-SVM fits a hyper plane directly in the 

feature space. Its benefit is that it is more computational efficient than RBF-SVM but it can 

only model linear decision boundaries. Such linear decision boundaries are not appropriate 

for every classification task; some tasks require non-linear decision boundaries. An RBF-

SVM implicitly maps the feature space to a higher dimensional feature space such that a 

non-linear decision boundary in the original feature space can be represented by a linear 

decision boundary in the higher dimensional feature space. This is known as the kernel trick. 

Although kernel methods like RBF are relatively efficient, they still take significantly more 

Name Number of feature 

space dimensions 

Bins per feature 

space dimension 

Histogram dimensionality Total number of 

bins 

HS100 2 10 2 100 

HS100 2 50 1 100 

HS144 2 12 2 144 

HS128 2 64 1 128 

HSV96 3 32 1 96 

HS-HOG96 3 32 1 96 

HSV216 3 6 3 216 

YIQ216 3 6 3 216 

RGB216 3 6 3 216 

IQ144 2 12 2 144 

RGB96 3 32 1 96 



 

computations than a linear-SVM. For more information on SVM and the kernel trick we 

recommend [7]. 

3.4 Classification 

On basis of an SVM trained on past image data, i.e. In-60,…,In-1, the task is to classify pixels 

in the current frame In as being part of a road or an obstacle. This process starts with feature 

extraction on In providing a feature for each non-overlapping 17-by-17 pixel block in In. 

These features are then classified by the SVM resulting in a classification of each pixel 

block in In. In this work, we assume that the road is always below the horizon; therefore we 

only classify pixel blocks that are below the horizon. Every pixel block above the horizon is 

determined to be part of an object. 

After classification, we apply post processing to incorporate some level of regularization. 

This starts with creation of a binary mask from the classification result in which 1 represents 

a road and 0 an obstacle pixel block. Regularization is then performed by applying median 

filters and enforces local smoothing of the classification result at the pixel block level. 

4 EVALUATION 

The primary goal of our experiments is to evaluate different image features (color-based and 

gradient-based histograms) for the road detection task. We also experiment with using a 

linear-SVM and a RBF-SVM. Our system is currently implemented in MATLAB utilizing 4 

cores and a GPU trough MATLAB’s parallel computing toolbox. 

Our experimental evaluation is based on 20 datasets with 123 manually annotated ground 

truth frames in total. The datasets are recorded at a resolution of 640-by-480 pixels at a 

frame rate of 30Hz. For a single experiment, we take a ground truth image Gn and train the 

SVM on 60 preceding frames In-60,…,In-1 and classify the current frame In. This classification 

is then compared pixel-wise against Gn, resulting in an error rate, i.e. the percentage of 

wrongly classified pixels in each frame. This per-frame error rate is averaged over all frames 

in a particular dataset, resulting in a per-dataset average error rate. An example of this 

classification process is shown in Fig. 3.  

We use five different performance criteria to evaluate our system: 

1. Average error rate: The average over the per-dataset average error rates. This assures that 

each dataset is equally weighted in the metric regardless of its number of ground truth 

   
(a) (b) (c) 

Fig. 3. The automaticaly obtained train mask sets (a) in which red is a weak obstacle label, green a weak road 

label and blue is unknown. The classification result (b) and the ground truth (c). 



 

frames. Frames for which the SVM did not converge, and which were not classified, are 

given an error of 100%. 

2. Average maximum error rate: The average over the per-dataset maximum error rates. 

Frames for which the SVM did not converge are ignored.  

3. Average maximum false negative rate: Similar as average maximum error rate but now 

only considering false negatives (road classified as obstacle). 

4. Average maximum false positive rate: Similar as average maximum error rate but now 

only considering false positives (obstacle classified as road). 

5. Total number of unclassified frames: Frames for which the SVM did not converge. This 

is an important measure for the robustness of the system. 

3.3 SVM configuration 

In the first experiment we compare a linear-SVM with a RBF-SVM on six randomly 

selected datasets. The two important parameters of the SVM are the box constraint (C) and 

the kernel width (σ) of the RBF. For these parameters, sweeps were performed and we only 

report the performance that was obtained with the optimal parameter values (C=90 and σ 

=30). The results of the RBF-SVM over several feature spaces are shown in Table II and 

that of the linear-SVM in Table III. It can clearly been seen that the RBF-SVM significantly 

outperforms the linear-SVM on multiple performance criteria. 

 

An interesting observation that can be made from Table II and Table III is that the best 

performing linear-SVM method has twice the average error rate of the best performing RBF-

SVM method but the feature spaces are different. For the linear method, feature spaces that 

have more dimensions (e.g. both color and gradient) perform better. The RBF-SVM method 

performs better on feature spaces with fewer dimensions. A closer inspection reveals that the 

performance of the linear-SVM approach is harmed by the high number of frames for which 

it did not converge. For our system, robustness is as important as accuracy, so the total 

TABLE III RESULTS LINEAR-SVM 
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HS-HOG96 11.90 11.60 11.60 1.78 3 

HSV96 15.86 10.84 10.07 1.89 5 

HSV216 17.97 19.30 19.06 2.24 5 

HS144 19.51 9.51 9.29 2.91 7 

HS128 19.90 13.46 13.42 1.87 7 

RGB216 20.12 10.85 7.95 5.34 5 

IQ144 39.32 19.10 19.03 1.51 15 

RGB96 43.96 18.67 16.50 3.88 16 

YIQ216 45.83 13.94 13.94 1.24 18 

 

TABLE II  RESULTS RBF-SVM 
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HS144 5.62 10.93 10.28 3.40 0 

HS128 5.72 10.92 10.77 1.97 0 

HSV96 6.05 13.96 13.95 1.96 0 

HS-HOG96 7.71 12.82 11.69 2.50 1 

HSV216 8.18 10.46 10.01 3.56 1 

YIQ216 9.06 23.40 23.25 4.34 0 

RGB216 10.18 24.11 22.23 6.77 1 

IQ144 10.34 23.78 23.15 2.52 0 

RGB96 21.40 19.68 18.36 3.77 5 

 



 

number of unclassified frames is an important performance criterion and makes the linear-

SVM approach unattractive 

Looking more in depth in the results of linear-SVM method, we see that the HOG based 

(HS-HOG96) and intensity based features (HSV96 and HSV216) outperform the features 

that do not use gradients or intensity. This shows that intensity and gradients are better 

linearly separable than e.g. Hue and Saturation for our application domain. However, this 

benefit is lost when using non-linear decision boundaries of RBF-SVM.  

3.4 Feature sets 

In our second experiment we focus on different feature spaces. We only discuss the results 

obtained with the RBF-SVM that are provided in Table II. The results show that feature sets 

with at least Hue and Saturation give the best results. Even so, only using Hue and 

Saturation provides optimal results. It is interesting to note that the HS128 feature, that uses 

a 1-D histogram with 128 bins in total, provides practically the same performance as the 

HS144 feature, which uses a 2-D histogram with 144 bins. This indicates that modeling 

dependencies between the Hue and Saturation subspaces adds little to no useful statistical 

information for the classifier. The slightly better average error rate of HS144 compared to 

HS128 is probably solely due to using more bins. Qualitative results obtained with using a 

RBF-SVM and the HS144 feature space are provided in Fig. 4. 

It can also be observed that gradient information used in the HS-HOG96 feature adds no 

benefits when compared to the HSV96 feature for the RBF-SVM. Apparently, only using 

Hue and Saturation and allowing for a non-linear separation boundary is better than using 

gradient/intensity information either with a linear or a non-linear separation boundary. This 

can be explained from the fact that gradient information is more sensitive to perspective 

distortion than color information. 

3.5 Histogram creation 

In this experiment we evaluate the potential benefit of linear compared to adaptive histogram 

creation strategies over all 123 ground truth frames. We use the Hue Saturation feature space 

and evaluate 1-D and 2-D histograms with a RBF-SVM. Here we make sure that each tested 

approach has an equal number of 100 histogram bins. The results are provided in Table IV.  

TABLE IV RESULTS LINEAR VS. ADAPTIVE HISTOGRAMS 

Dimensions Bin distribution Average error rate (%) 

1 Linear 4.3903 

1 Adaptive 4.6354 

2 Linear 4.5216 

2 Adaptive 4.8883 

 

It can be seen that using adaptive bins has no advantage over linear bins. However, in 

preliminary experiments where we used very few bins (10-25 bins), we observed that using 

adaptive bins is advantageous. However, the absolute performance when using so few bins 

is significantly worse than when using 100 bins. This indicates that using adaptive bins is 

only useful when a system has strict limitations on computation resources. 



 

 

 

5 CONCLUSIONS 

We developed an online and self-supervised computer vision system that can aid intelligent 

vehicles in distinguishing obstacles from surfaces on which can be driven. Critical design 

choices regarding the used classifier and appearance models are evaluated. It is shown that 

optimal accuracy of 95.6% is achieved, when using a RBF-SVM classifier with 1-D color 

histograms containing Hue and Saturation. In future work, we will develop a real-time 

version of our system and extend it with methods that regularize the classification over time. 
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Fig. 4. Example results of our online self-supervised road detection system using a RBF-SVM with the HS144 

feature space. Classification results are shown in top row and ground truth labels are shown in bottom row. 


