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Abstract— This work concentrates on vision processing for
ADAS and intelligent vehicle applications. We propose a color
extension to the disparity-based Stixel World method, so that
the road can be robustly distinguished from obstacles with
respect to erroneous disparity measurements. Our extension
learns color appearance models for road and obstacle classes in
an online and self-supervised fashion. The algorithm is tightly
integrated within the core of the optimization process of the
original Stixel World, allowing for strong fusion of the disparity
and color signals. We perform an extensive evaluation, including
different self-supervised learning strategies and different color
models. Our newly recorded, publicly available data set is
intentionally focused on challenging traffic scenes with many
low-texture regions, causing numerous disparity artifacts. In
this evaluation, we increase the F-score of the drivable distance
from 0.86 to 0.97, compared to a tuned version of the state-
of-the-art baseline method. This clearly shows that our color
extension increases the robustness of the Stixel World, by
reducing the number of falsely detected obstacles while not
deteriorating the detection of true obstacles.

I. INTRODUCTION

In recent years, vehicles are made increasingly intelli-
gent with so-called Advanced Driver Assistance Systems
(ADAS). This development is expected to significantly re-
duce traffic accidents, traffic congestion and fuel consump-
tion simultaneously. To ensure traffic safety, ADAS can e.g.
indicate the location of potentially hazardous obstacles to
the driver and the position of safely drivable road. On the
longer term, ADAS and related technologies will allow the
development of fully autonomous vehicles. In this work, we
improve a state-of-the-art vision-based road-versus-obstacle
detection system by exploiting a strong fusion of multiple
image modalities.

To robustly facilitate situational awareness at a moving
platform, several complementary sensor modalities should
be employed. These modalities can include RADAR, LI-
DAR, ultrasound, and (thermal) imaging. The benefit of
using vision-based systems is that they provide dense scene
information in a cost-effective way. Image data is also a
rich source of information, since it comprises of several
submodalities. For stereo-based imaging, these informative
features include disparity, texture, color, shape, and optical
flow. All these submodalities can contribute to a robust
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Fig. 1. Stixel segmentation results, superimposed on the left camera
image (left) and the corresponding disparity image (right). Color indicates
distance: blue is far away, green mid range and red is close by. Panel (a)
illustrates good segmentation results, acquired with an HD resolution stereo
camera with a 1.5-m baseline, panel (b) shows examples obtained with a a
medium-quality stereo camera (with 0.12-m baseline and 1024×768 pixels
resolution, lower dynamic range), resulting in false negatives in the road
detection. In general, these false negatives are caused by inconsistencies in
the disparity signal. Our contribution is illustrated in (c), where the same
frame is segmented using our stixel algorithm. The disparity is fused with
color, removing most of the inaccuracies.

situational analysis, such as e.g. the detection of partially
occluded pedestrians who are about to cross the streets.
Although LIDAR, RADAR or ultrasound provide valuable
complementary information, in this work we solely focus on
vision-based detection systems.

Many vision-based ADAS systems are already used in
practice. These are mainly monocular systems that detect
pedestrians [1], lane markings [2], and traffic signs [3].
These systems are well suited for current ADAS solutions.
Fully autonomous vehicles require more dense, accurate, and
more reliable sources of scene information, in particular 3-D
information. To obtain 3-D information, high-end laser-based
systems (accompanied by RTK-GPS) are typically used [4],
[5]. The current challenge in vision-based ADAS, is to be



able to deliver comparable semantic 3-D scene information,
at a more affordable price point than that of high-end laser-
based systems.

Multi-view image processing, in particular stereo vision,
has the potential to fulfill these requirements. In stereo vision,
the disparity, which is analogous to depth, can be estimated
densely and in real-time [6]. This gives a direct description
of the geometry of the scene and it facilitates, for example, a
separation of flat, drivable surfaces from erect obstacles [7],
[8]. A state-of-the-art approach for this is called the Stixel
World method [9]. This is a fully probabilistic framework to
distinguish ground from obstacles in the disparity signal, and
it can be implemented efficiently given several assumptions.
This framework is generally more flexible and more robust
than its predecessors, Figures 1a and 1b illustrate typical
results. Section II discusses this method in more detail.

A common deficiency of all disparity-based methods is
that their analysis relies on the single modality disparity,
even though that modality generally suffers from errors such
as noise, strong outliers and holes due to occlusions, or due to
little texture information in large image regions. An example
of these issues is depicted in Fig. 1b. Although these issues
can be addressed to a certain extent by using high-quality
cameras and more advanced disparity estimation, they can
never be fully resolved, since traffic scenes will often contain
image areas with, for instance, low illumination, shadows,
sunny reflections or motion blur.

It is evident that the fusion of the estimated disparity with
other (image) modalities is advantageous for obtaining more
reliable information. Optical flow and texture analysis typi-
cally suffer from the same challenges as disparity estimation,
as all require well-textured image regions. More orthogonal
and complementary image modalities are therefore color,
shape, and appearance. The color modality is dense by nature
and is often used to automatically distinguish the road on
which the vehicle is driving from its surroundings [10], [11],
[12], which is also the focus of our work.

In recent work, advantages of the combination of us-
ing depth information with color information has been
shown [13], [14], [15]. A particular interesting strategy is
to use the dense disparity-based depth information, to on-
line learn a color-based road-versus-obstacle model in a self-
supervised manner [16], [15]. This model is used to classify
image regions as either road or obstacle, which is then com-
bined with the disparity-based analysis. This combination is
typically performed with rather straightforward methods of
fusion, and can be as simple as using the disparity analysis
up to a distance from the vehicle and the color-based analysis
after this distance [4].

A key property of the Stixel World method of [9] is that
it allows for non-linear fusion of different dense (image)
modalities in one probabilistic framework. Instead of ana-
lyzing each modality separately and then combining their
results [13], [15] (i.e. weak fusion), the Stixel World method
allows for an efficient analysis on the basis of all modalities
simultaneously (i.e. strong fusion). To our knowledge, this
property has received little attention in literature. In this

work, we exploit this promising line of research, by com-
bining disparity and color modalities for road-versus-obstacle
image segmentation, where the color model is learned on-line
and is executed in a self-supervised mode. Besides showing
the advantages of strong fusion of these particular image
modalities, our work is also informative for those who are
interested in fusion of other modalities within the Stixel
World framework.

The remainder of this paper is structured as follows. First,
we will provide a short description of the disparity-based
Stixel World in Section II, since it serves as a basis of our
work. Our main contribution is put forward in Section III,
where we describe how we fuse color information into an
extended stixel framework. In Section IV we elaborate on our
evaluation approach, including our publicly available data
set, experiments and results. Lastly, conclusions are provided
in Section V.

II. THE DISPARITY STIXEL WORLD

Let us now give a short overview of the Stixel World
framework as it is presented in [9], which we use as a basis
of our work. The main goal of stixel segmentation is to find
the optimal labeling L∗ of vertically stacked, piecewise planar
ground or obstacle segments for the input disparity data D.
Finding L∗ can be formulated as a MAP estimation problem
as in (1), which can be solved efficiently using Dynamic
Programming. Using Bayes’ theorem and assuming (a) that
columns are independent, (b) that disparity measurements
du,v ∈ D at individual pixels (u,v) are independent and (c)
that data within Du is independent from the labeling in
other columns, the posterior probability can be written as
in (2). Here, u is the column index and w the image width.
The probability P(Lu) models a-priori world knowledge to
constrain the labeling to avoid dispensable segments and
physically unlikely situations. This world model offers a
way to regularize the results for image-column optimality,
whereas the methods of [7] and [8] potentially lead to sub-
optimal results, since they analyze data mostly locally. The
details concerning P(L) are presented in [9]. Finally, in
(3), the likelihood of the data given a certain labeling is
provided, where n is the segment index, Nu the number of
segments in Lu, and vb

n and vt
n the bottom and top row-

index of segment sn that has a label ln ∈ {g,o}, representing
the ground and obstacle classes, respectively. The previously
mentioned equations are specified by

L∗ = argmax
L∈L

P(L|D), (1)

P(L|D)∼
w−1

∏
u=0

P(Du|Lu) ·P(Lu), (2)

P(Du|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v). (3)

The next step is accounting for invalid disparity measure-
ments dv /∈ [dmin,dmax]. These will occur, for example, if the
estimator cannot find a match in the stereo frames. To this



end, a probability of encountering a non-valid measurement
is defined, pinvalid, as well as the probabilities that such a
pixel will represent either ground or obstacle, p(ln|invalid).
With this, we can calculate the probability of invalid data
for each class using Bayes’ rule: pln

invalid = p(invalid|ln) =
p(ln|invalid) · p(invalid)/p(ln). This then leads to

P(dv|sn,v) =

{
PD(dv|sn,v) · (1− pln

invalid) for valid dv

pln
invalid otherwise.

(4)

Here, PD(dv|sn,v) represents the probability of a single
valid disparity measurement dv at a certain row v, assuming
that it would belong to a potential segment sn. The dis-
tribution PD(dv|sn,v) is modeled as a mixture model that
consists of a uniform distribution to handle outliers and a
Gaussian distribution to model how well the measurement
fits the potential segment:

PD(dv|sn,v) =
pout

dmin−dmax
+

1− pout

Anorm
e
− 1

2

(
dv− fn(v)
σ ln ( fn,v)

)2

. (5)

In (5), pout is the fixed probability of encountering an
outlier. The normalization term Anorm and the modeled
standard deviation σ ln are defined in [9]. The remaining
term, fn(v), models the expected disparity within a segment
for ground and object segments. For objects, f o

n (v) = µn
is adopted, assuming a fronto-parallel object surface at the
mean disparity of the segment. For ground segments, f g

n (v)=
α · (vhorizon − v) is used, assuming a linear ground plane
surface with a slope α .

III. COLOR EXTENSION
As a key contribution, we incorporate a color signal C in

the Stixel World model. To this end, the data term of (1)-
(4) should now reflect both color and disparity information.
Starting from P(L|D,C), a derivation can be made analogous
to the description in Section II. If we additionally assume
that disparity and color modalities are independent, we can
rewrite the data term of the likelihood as

P(Du,Cu|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v) ·P(cv|sn,v), (6)

where segment sn has a label ln ∈ {g,o}, as before. Note
that the term P(dv|sn,v) also incorporates the construction for
invalid disparity measurements as in (4) but is left out here
for compactness. Furthermore, we do not alter the definition
of the world model P(L) but focus on defining a suitable
color model within P(cv|sn,v). This term should capture the
probability of a certain color measurement given a certain
segment label. We let this be independent of the position v
of the segment and merely consider the label of a segment, so
that P(cv|sn,v) = P(cv|ln). This is a reasonable simplification
since P(L) already constraints physically unlikely segmenta-
tions and we can assume that the color of the road surface
is roughly constant within the image. When optimizing the
Stixel World cost function P(L|D), we use a weighing factor
λ between the cost of the disparity term P(dv|sn,v) and that
of the color term P(cv|sn,v). This is required to compensate
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Fig. 2. The original stixel framework (top), relies on disparity images
alone. In contrast, our proposed extension (bottom) exploits both disparity
and color information.

Algorithm 1 Segmentation in the Extended Stixel World
Input: image Itn ; disparity D; learning window LW ;

[Learn Color Models]
for each t ∈ LW do

Ct ← TransformRGB2Color(It)
for l ∈ {ground,obstacle} do

T Ml
t ← GenerateTrainingMask(L∗t ,T Ml

prior)

X l
t ← ExtractSamples(Ct ,T Ml

t )

H l
t0 ← AddToHistogram(H l

t0 ,X
l
t )

end for
end for
P(C|l)← NormalizeHistogram(H l

t0 )

[Process Current Frame]
C← TransformRGB2Color(It0 )

L∗← StixelSegmentation(D,C,P(C|l))
Output: Optimal Labeling L∗

for the oversimplification in the modeling of their theoretical
joint probability density in two dis-joint terms, which use
different probabilistic methods (i.e. Gaussian distributions
and histograms).

The main steps of our processing framework are concep-
tually captured in Fig. 2 and Algorithm 1. It comprises of
two main steps: learning color models for road and obstacle
image areas (in Algorithm 1: [Learn Color Models]) and
segmenting the current frame using the Extended Stixel
World method (In Algorithm 1: [Process Current Frame]).
These will be addressed in detail in the next subsections.

A. Color Representation

A common approach in color analysis is employing color
histograms as dense area descriptors. Color histograms can
be defined with linear, non-linear or adaptive binning strate-
gies. We apply the adaptive binning strategy minimum vari-
ance quantization, also known as median cut quantization, as
described in [17]. This ensures that we optimally adapt the
borders of our histogram bins to the color signal of a certain



traffic scene efficiently and accurately. We will compare this
strategy to relying on unadapted, linearly spaced bins in our
experiments.

In our analysis, we will mainly focus on the RGB color
space since it yields good results in numerous color based
experiments. We will compare this approach to a HS-
based approach in several tests as well. The function that
transforms each RGB image frame It to the desired color
representation Ct is indicated as the ’TransformRGB2Color’
in Algorithm 1.

B. Self-supervised Online Learning of Color Models

Since we aim at a system that is highly adaptable to
different traffic environments, we will learn our color models
P(c|l) online. This is an intuitive approach, since an offline
learning strategy would require a single color model that is
both general enough to be applicable to all potential road
appearances and simultaneously discriminative enough to
always separate that road from its surroundings. Our online
learning approach is indicated in Algorithm 1 under the
section ’Learn Color Models’.

In our framework, a learning window LW is defined,
containing 1 or more frames that precede the current frame
at t = tn with a maximum range of 60 frames back in
time, denoted by tn−60. These frames are transformed to the
quantized color space. From this signal, training samples are
selected that are believed to be representative of either the
road or the obstacle class. These samples are then used to
fill and normalize a color histogram for each class, providing
the required P(cv|ln).

To select ground and obstacle training samples from the
preceding frames It within LW , we need to generate a
training mask for each frame and each class l ∈ {g,o},
denoted by T Ml

t . To this end, we exploit the fact that each
previous frame was already analyzed and segmented by our
system at its corresponding time t. This process results in
an estimate of obstacle and ground areas in each frame, to
which we refer to as segmentation masks (SegmMask). Note
that at the start of a sequence, the color model P(c|l) is not
yet learned and, hence, taken as a uniform distribution. As a
consequence, the first frames are effectively segmented using
only their disparity signal.

We explore two strategies to create training masks: we
use the full SegmMask or we Intersect it with a prior
mask. For road samples, this is illustrated in Fig. 3 with an
example image (top left) and the corresponding estimation
of the ground area, as provided by its (disparity-based)
segmentation result (Fig. 3, middle left). We define the prior
mask (T Mg

prior) as a fixed trapezoid in the bottom center of
the image (Fig. 3, top right). By intersecting this prior mask
with the segmentation result, we acquire a mask that contains
the road area directly in front of the car, excluding detected
obstacles (Fig. 3, middle right).

To generate a training mask to extract obstacle training
samples, we employ a comparable strategy. The SegmMask
is the inverted version of the one for ground (i.e., the black
regions in Fig. 3 middle-left). For the Intersect, we apply

Fig. 3. Illustration of our training mask approach to acquire road samples.
Top-left: input image; top right: T Mg

prior; middle left: ground segmentation
mask; middle right: intersection of the two, T Mg

t . The bottom row illustrates
the different ground-truth annotations, with left drivable surface and right
road.

a mask containing the area below the horizon. This makes
the color modeling of obstacles more adapted to obstacles
that are on the road, which are more relevant to detect than
tree-leaves or rooftops.

IV. EVALUATION

The goal of our evaluation is to show the benefit of our
color extension and to assess its crucial design choices. These
are: (a) the color space specifications, (b) the strategy of
selecting training samples with T Mg

t and T Mo
t , and (c) the

position and range of the learning window LW . The results
give important insights on the most effective application of
our methods and their efficiency in real-world situations. All
our results will be compared to results that are acquired with
the baseline approach of [9].

A. Test Setup

We have acquired an extensive data set in an urban
environment, using a BumbleBee2 camera, mounted behind
the windshield of a car, just below the rear view mirror.
The camera has a baseline of 12 cm, a resolution of
1024x768 pixels and a frame rate of 20 FPS. This data set
is made publicly available1.

We have selected 74 representative frames from the set
and manually annotated both road and drivable surface areas,
as illustrated in the bottom row of Fig. 3. The frames
contain a large variety of relevant traffic situations, such as
small, crowded streets with cyclists, road repair sites, large
crossings and high ways. It contains both asphalt and paved
roads of several colors (black, gray, red) and both frames
with low illumination due to heavily clouded skies or trees
and frames with high illumination from clear sky with sunny
reflections. Several example frames are provided in Fig. 4.

To obtain disparity measurements, we employ a multi-
threaded version of the OpenCV’s implementation of the
Semi Global Block Matching algorithm of [18]. Due to

1http://www.willemsanberg.net/research



the many low-texture image regions in our data set, we
have found that a matching window size 7× 7 pixels and
smoothing parameters p1 = 16 · 72 and p2 = 8 · p1 provide
the most acceptable results. We also employ a winner margin
of 20, to force the algorithm to have a higher precision at
the cost of recall. This is beneficiary for the baseline Stixel
World method, since it can handle missing values better
than erroneous ones. This can be seen as a simplification
of the work presented in [19], in which disparity estimates
are accompanied by a confidence measure to adaptively set a
outlier probability. In our approach, this confidence is binary
with a relatively strict threshold based on the winner margin.

As described, our camera has lower resolution and a
smaller baseline than, for example, the camera used for the
KITTI benchmark data set [20], resulting in lower quality
disparity estimates. To compensate for this deficiency and to
obtain more favorable results for the baseline method, we
have made some improvements to the baseline framework.
For instance, we learn the ground plane model f g

n (v) on-line
instead of using a single fixed model. To this end, we exploit
a v-disparity representation such as in [8] for several vertical
slices of each frame, making our system more robust against
ground plane deviations over time and non-horizontal ground
areas.

Moreover, we have tuned the label-based transition prob-
abilities defined in P(L) to boost the performance of the
baseline method even further. Finally, we have added an
artificial ground segment to the bottom of each stixel, de-
noted with Seg0. This segment represents the area below the
camera view, which can safely be assumed to be road in this
context, and it reduces false detections in the lower image
regions due to noisy disparity estimates. To show the value of
these additions, we report the performance of each of these
three disparity baselines (original settings, tuned transition
probabilities and with the artificial Seg0 as ground).

The relevant Stixel World parameters, as described in
Section II, are set as follows throughout all experiments:
pout = 0.25; pinvalid = 0.25; pinvalid

g = 0.55; pinvalid
o = 0.45;

pg = po = 0.5; dmin = 1; dmax = 32. Furthermore, we have
adopted a stixel width of 10 columns and subsample the
disparity and color signals vertically with a factor of 3
prior to segmentation. Note that we exploit the full image
data to compute look-up tables and color models, which is
comparable to the approach in [9]. The research version of
the Extended Stixel World method is a MATLAB-based im-
plementation. The added complexity of the color-processing
is small compared to the disparity-analysis baseline com-
plexity. Therefore, it is safe to assume that our proposed
extension can executed as a real-time system, as can the
original one [9].

B. Scoring Metrics

Inspired by the work of Fritsch et al. on performance
metrics for road detection algorithms [21], we evaluate our
road detection algorithm in a Bird’s Eye View (BEV) repre-
sentation of the scene. A BEV representation is corrected
for geometric distortion to avoid that pixels near the car

outweigh pixels further away in the segmentation score. In
this representation, we have employed several metrics to
assess the performance of our algorithm. First of all, we
measure the recall and precision of the road area. We do
this with the road annotation as a reference. However, pixels
that are drivable but not belong to the road are ignored in
the evaluation, such as curbs and grass. The purpose of
this strategy is to assess in which areas improvements or
deteriorations of the results appear. Since the goal of this
work is to improve the road segmentation, improving the
recall of the road region is the most important. If this results
in a lower precision score, it is acceptable as long as that
occurs mostly in drivable surfaces that are not road. In this
evaluation, we consider the area up to 30 meters in front of
the vehicle.

As the stixel representation approximates area contours
with rectangular shapes, it is not possible to achieve a
pixel-accurate segmentation. Consequently, achieving perfect
recall and precision is also not realistic. To determine how
close the performance of the tested methods come to the
maximum attainable performance, we estimate realistic op-
timal recall and precision levels by eroding and dilating the
ground truth segmentation masks by a square kernel with
dimensions similar to the stixel width.

Next to this pixel-based metric that is vision inspired, we
assess the added value of our method with a more practical
application in mind, relevant to our context: measuring where
a vehicle can drive. This can also be measured in the
BEV representation of our road segmentation results. In that
representation, we measure how far a vehicle can drive by
calculating where the first object is that a vehicle of average
width would drive into. Using the ground-truth annotations,
we can define recall and precision scores, which take into
consideration a 5 meter safety margin around obstacles.
Recall indicates how much of the ground-truth drivable
distance is detected correctly. The recall will be lower than
unity when a false obstacle is detected in front of the first real
obstacle. The precision represents how much of the detected
drivable distance is correct. If the real obstacle is missed, the
precision will be lower than unity. Consequently, for each
frame either the recall or precision of the drivable distance
is always equal to unity. This evaluation is performed over a
range of up to 50 meters. For these metrics, we also calculate
the resulting F-score, which is defined as the harmonic mean
of recall and precision.

C. Experiments and Results

In the coming sections, the experiments assessing the
critical design choices of our Extended Stixel World method
are presented, together with their quantitative results.
Fig. 4 shows qualitative results and illustrates the road
segmentation scoring metric.

1) Color Model: We have evaluated several different color
spaces and settings. We have varied the number of clusters
k that is used to approximate the colors in the current
learning window and the color-data weighing factor λ , for



Fig. 4. Qualitative results of our proposed method. For each frame, we show eight images. The top row contains the rectified and cropped left camera
image and the corresponding disparity image. Below that, we present the baseline result in the left column and our results in the right column. We show
three representations: first the stixel results, where color depicts obstacle distance (red (close) to blue (far)); then an overlay of the ground mask (in green)
with the road ground truth outlined in red, and ignored pixels that are drivable but not road in orange. Finally, we show the BEV of the result with lines
at ranges of 10, 20, 30, 40 and 50 meters. All frames show that our method improves the recall of road regions, even with relatively low light conditions.

both indexed RGB and linear-binned HS representations. For
linear binning, we allow k bins per dimension, resulting in
k2 bins for HS.

The most relevant results of these experiments are pro-
vided in Fig. 5 and Table I. Based on the results illustrated
in Fig. 5, the HS color representation (bright green crosses)
performs better at increasing the recall, and RGB (cyan
crosses) tends to improve the precision of the road segmen-
tation. The experiments with high a λ and a low k generally
led to deterioration of the (tuned) baseline results. This
makes sense, since the color representation cannot contain
much discriminating information, and yet the confidence is
boosted, leading to false results. We have obtained the best
results with an indexed RGB color model, using k = 64 and
λ = 4 (F = 0.968). The closest HS-based score (F = 0.967)
was obtained using k = 16 and λ = 2, where we ignored
experiments with worse precision than the baseline, since
road-precision is key for safe ADAS. Although these pixel-

based scores are very similar, the RGB run outperforms the
HS-run 0.919 to 0.861 in the recall of the drivable distance
(Table I). This means that more false obstacles are detected
with the HS experiment, even though the HS model uses
16× 16 bins and the RGB only 64. In the left graph of
Fig. 6, two runs with λ = 1 are shown. These perform similar
or worse than the (tuned) baseline method, illustrating the
importance of correct normalization when fusing different
signal modalities.

2) Training Mask: To evaluate our choice of training
mask (T Ml

t ) for the selection of training samples, we com-
pare the two approaches described in Section III-B. This
involves using the segmentation mask alone, or intersecting
it with a fixed, a-priori defined trapezoid in front of the
vehicle (for ground samples) or the area below the horizon
(for obstacle samples). In the middle graph of Fig. 6, the
results of these strategies are shown, using the best settings
for RGB and HS, as found in Section IV-C.1. In this metric,



the training mask has little influence, since all graphs nearly
overlap. However, in the ROC plot (Fig. 5), the influence
is remarkable, visible from the dotted green (HS) and blue
(RGB) lines. The central points are the experiments with
one segmentation mask and one intersection. The scores
with high recall are obtained using the segmentation masks
for both ground and obstacles, and the scores with high
precision are obtained using the intersection masks for both
classes. So, the system becomes more conservative (higher
precision) when the color models are focused on relevant
areas. We have selected the use of the segmentation mask
for ground samples and the intersect method for obstacle
samples, since it results in the highest F-score and is a good,
rational compromise.

3) Learning Window: The most relevant settings of the
learning window are its range and position with respect to
the new frame. First, we vary the length of the learning
window by extending it further into the past with a
maximum of 60 frames before the current frame (equivalent
to 3 seconds ago). With this sub-experiment, we will
validate if the added complexity of taking more frames into
account translates into more robustness. Next, we analyze
whether or not it is possible to leave a gap between the
frames in the learning window and the frame currently
under analysis. This is an important sub-experiment, since
if there is more time available to analyze the frames of
the learning window, either the constraints on execution
time can be loosened, or more complex algorithms can
be employed. As a third sub-experiment on the learning
window parameters, we limit the range to a single frame
and vary its position. Effectively, this combines the extreme
cases of the first experiment (varying the length) with the
idea of the second ( leaving a gap). In the most extreme
case of this third experiment, a color model is learned on
a single frame, 60 frames back in time. We found that the
effects of the LW settings are similar for both our metrics.
In Fig. 5, the results are marked magenta. They mostly
overlap, even though we tested several extreme cases. In the
right graph of Fig. 6, the runs with the 3-seconds-old frame
are marked explicitly. They perform slightly worse, but still
outperform the baseline with more than 25%. This signifies
that the system is very flexible in the selection of LW
frames: a single frame, somewhere from the last 3 seconds,
can provide enough information to learn a reliable color
model for road area.

V. CONCLUSIONS

We have presented a color extension to the disparity-based
Stixel World algorithm, to more robustly segment road versus
obstacles in traffic scenes by on-line learning color models in
a self-supervised way. This extension particularly improves
the robustness of the segmentation against erroneous dispar-
ity estimates, which inevitably occur during challenging low-
texture imaging situations, regardless of the quality of the
stereo camera being used. Fusing the disparity information
with other (image) modalities, as is done in this work, is
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HSlin; LW10:0; SM/SMBH; sweep k and  λ
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HSlin; LW10:0; sweep TM; k=16;  λ=2

RGBind/HSlin; sweep LW

disparity optimization runs

Fig. 5. Resulting ROC plot of the described experiments. Note that the
range of the axis is only [0.9,1] and [0.85,1]. This figure is best viewed
in color. Explanation of the legend: LW[start:end]: Learning Window with
range [t0−tstart , t0−tend ]; TM: training mask, which can be the segmentation
mask or the intersection of that with a prior mask. The scores are based on
the road ground-truth annotation and ignore pixels that are drivable but not
part of the road region, such as grass and pavement.

therefore crucial for safe and reliable road-versus-obstacle
segmentation.

Critical design choices for our color extension have been
evaluated on a data set that was specifically focused on
challenging imaging situations. The correct selection of
color model settings, such as the number of bins and the
normalization factor for data fusion, is shown to be crucial to
increase the segmentation performance. The use of an on-line
optimized indexed color representations allows for highly
descriptive and efficient color models for road and obstacle
classes. Moreover, it was shown with our experiments that
even a single frame, captured seconds earlier, provides our
system with sufficiently reliable color information. This
offers opportunities for time-efficient or more complex color
modeling, if required.

The combination of these aspects result in an increased
pixel-based F-score on road segmentation from 0.96 to 0.97,
compared to a heavily optimized baseline method. Without
optimization, the baseline method scored 0.91. In detecting
drivable distance, our method increases the F-score from 0.86
to 0.97. These results clearly show that our Extended Stixel
World method, based on strong fusion of disparity and color
modalities, is an accurate and robust method for road versus
obstacle segmentation.

REFERENCES

[1] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection:
survey and experiments.” IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence (TPAMI), vol. 31, no. 12, pp. 2179–95, Dec. 2009.

[2] Z. Kim, “Robust lane detection and tracking in challenging scenarios,”
in IEEE Trans.on Intelligent Transportation Systems (TITS), vol. 9,
2008, pp. 16–26.



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall Drivable Distance: Color settings

Evaluated range in front of vehicle [m]

R
E

C
A

L
L

 

 

Disp. baseline (original settings)

Disp. baseline (optimized settings)

Disp. baseline (optimized & Seg0 is ground)

RGBind; k=32; λ=1

RGBind; k=64; λ=4

RGBind; k=32; λ=8

HSlin; k=16; λ=1

HSlin; k=16; λ=2

HSlin; k=4; λ=8

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall Drivable Distance: Training Mask settings

Evaluated range in front of vehicle [m]

R
E

C
A

L
L

 

 

Disp. baseline (original settings)

Disp. baseline (optimized settings)

Disp. baseline (optimized & Seg0 is ground)

RGBind; sweep TMg and TMo {SegmMask, Intersect}

HSlin; sweep TMg and TMo {SegmMask, Intersect}

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall Drivable Distance: Learning Window settings

Evaluated range in front of vehicle [m]

R
E

C
A

L
L

 

 

Disp. baseline (original settings)

Disp. baseline (optimized settings)

Disp. baseline (optimized & Seg0 is ground)

RGBind; sweep LW {60:0, 10:0, 10:10, 5:5, 1:1}

RGBind; LW 60:60

HSlin; sweep LW {60:0, 10:0, 10:10, 5:5, 1:1}

HSlin; LW 60:60

Fig. 6. Recall plot of the drivable distance for several runs, evaluated over increasing ranges. Average precision scores are not shown, since they are
0.997±0.004 over all frames, runs and ranges (meaning that our methods very rarely miss a true obstacle within 50 meters). Explanation of the legend:
LW[start:end]: Learning Window with range [t0− tstart , t0− tend ]; TM: training mask, which can be the segmentation mask or the intersection of that with
a prior mask; k: the number of bins (for HS: k bins per dimension).

TABLE I
OVERVIEW OF QUANTITATIVE RESULTS FOR DIFFERENT SETTINGS AND OUR TWO SCORING METRICS

Road Segmentation Drivable distance (≤ 50m)
F-score Recall Precision F-score Recall Precision

Disparity baseline (original settings) 0.910 0.863 0.964 0.489 0.323 1.000
Disparity baseline (optimized settings) 0.961 0.961 0.961 0.717 0.559 1.000
Disparity baseline (optimized & Seg0 is ground) 0.963 0.965 0.961 0.858 0.755 0.993
Color space LW TMg TMo k λ

indexed RGB 10:0 SegmMask Intersect 64 4 0.968 0.969 0.967 0.956 0.919 0.995
indexed RGB 10:0 SegmMask Intersect 32 8 0.963 0.964 0.963 0.968 0.946 0.992

linear HS 10:0 SegmMask Intersect 16x16 2 0.967 0.973 0.961 0.923 0.861 0.995
indexed RGB 10:0 SegmMask SegmMask 64 4 0.965 0.975 0.956 0.958 0.925 0.995
indexed RGB 10:0 Intersect Intersect 64 4 0.968 0.960 0.976 0.956 0.915 1.000
indexed RGB 60:60 SegmMask Intersect 64 4 0.965 0.961 0.968 0.950 0.905 0.999

linear HS 60:60 SegmMask Intersect 16x16 2 0.967 0.973 0.961 0.909 0.835 0.997

[3] A. De la Escalera, J. M. Armingol, and M. Mata, “Traffic sign
recognition and analysis for intelligent vehicles,” Image and Vision
Computing, vol. 21, pp. 247–258, 2003.

[4] S. Thrun and M. Montemerlo, “Stanley: The robot that won the
DARPA Grand Challenge,” J. of Field Robotics, vol. 23, pp. 661–692,
2006.

[5] C. Urmson, C. Baker, J. Dolan, P. Rybski, B. Salesky, W. Whittaker,
D. Ferguson, and M. Darms, “Autonomous driving in urban environ-
ments: Boss and the Urban Challenge,” AI magazine, vol. 30, pp.
17–28, 2008.

[6] W. Van Der Mark and D. M. Gavrila, “Real-time dense stereo
for intelligent vehicles,” IEEE Trans. on Intelligent Transportation
Systems (TITS), vol. 7, no. 1, pp. 38–50, 2006.

[7] G. Dubbelman, W. van der Mark, J. C. van den Heuvel, and F. C. A.
Groen, “Obstacle detection during day and night conditions using
stereo vision,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, Oct. 2007, pp. 109–116.

[8] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection
in stereovision on non flat road geometry through ”v-disparity” repre-
sentation,” IEEE Intelligent Vehicle Symp. (IV), vol. 2, pp. 646–651,
2002.

[9] D. Pfeiffer, “The Stixel World,” Ph.D. dissertation, Humboldt-
Universitat Berlin, 2011.

[10] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez, “Road Scene
Segmentation from a Single Image,” in Eur. Conf. on Computer Vision
(ECCV), 2012, pp. 376–389.

[11] J. M. Alvarez, M. Salzmann, and N. Barnes, “Learning appearance
models for road detection,” IEEE Intelligent Vehicles Symp. (IV),
no. Iv, pp. 423–429, June 2013.

[12] A. Neto and A. Victorino, “Real-time estimation of drivable image
area based on monocular vision,” in IEEE Intelligent Vehicles Symp.
(IV). Gold Coast, Australia: IEEE, 2013, pp. 63–68.

[13] C. G. Keller, M. Enzweiler, M. Rohrbach, D. F. Llorca, C. Schnörr, and
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