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Abstract— This work contributes to vision processing for
intelligent vehicle applications with an emphasis on Advanced
Driver Assistance Systems (ADAS). A key issue for ADAS is
the robust and efficient detection of free drivable space in
front of the vehicle. To this end, we propose a stixel-based
probabilistic color-segmentation algorithm to distinguish the
ground surface from obstacles in traffic scenes. Our system
learns color appearance models for free-space and obstacle
classes in an online and self-supervised fashion. To this end,
it applies a disparity-based segmentation, which can run in
the background of the critical system path and at a lower
frame rate than the color-based algorithm. This strategy enables
an algorithm without a real-time disparity estimate. As a
consequence, the current road scene can be analyzed without
the extra latency of disparity estimation. This feature translates
into a reduced response time from data acquisition to data
analysis, which is a critical property for high-speed ADAS.
Our evaluation over different color modeling strategies on
publicly available data shows that the color-based analysis can
achieve similar (77.6% vs. 77.3% correct) or even better results
(4.3% less missed obstacle-area) in difficult imaging conditions,
compared to a state-of-the-art disparity-only method.

I. INTRODUCTION
In recent years, vehicles are becoming increasingly intel-

ligent with so-called Advanced Driver Assistance Systems
(ADAS). This development is expected to significantly re-
duce traffic accidents, traffic congestion and fuel consump-
tion simultaneously. To ensure traffic safety, ADAS can e.g.
indicate the location of potentially hazardous obstacles to the
driver and the area position of safely drivable road. On the
longer term, ADAS and related technologies will allow the
development of fully autonomous vehicles. In this work, we
improve a state-of-the-art vision-based free-space detection
system by efficiently exploiting multiple image modalities.

To robustly facilitate situational awareness at a moving
platform, several complementary sensor modalities should
be employed. These modalities can include RADAR, LI-
DAR, ultrasound, and (thermal) imaging. The benefit of
using vision-based systems is that they provide dense scene
information in a cost-effective way. Image data is also a
rich source of information, since it comprises of several
informative properties. For stereo-based video imaging, these
informative aspects include not only the usual texture, color
and shape features, but also optical flow motion analysis
and disparity estimation. All these elements can contribute
to a robust situational analysis, such as e.g. the detection
of partially occluded pedestrians who are about to cross
the street. Although LIDAR, RADAR or ultrasound provide
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Fig. 1. Stixel segmentation results comparing a disparity-only result (top
left), a RGB-only result using 10 frames for online learning (bottom left),
and a new gray-only result for which just 3 frames are used for the online
learning (bottom right). The orange overlay with a dark border depicts
the space occupied by obstacles according to the detection algorithm. At
the top right, the disparity signal is shown, which has several artifacts,
due to low texture in the road region (left) and a pole reflection in the
windshield (middle). These artifacts cause false obstacle detections in the
original disparity-based algorithm [1]. Here, we show that it is possible to
obtain similar or even better segmentation results with our color modeling,
while requiring less data in the process.

valuable complementary information, in this paper we solely
focus on vision-based detection systems.

Multi-view image processing, in particular stereo vision,
has the potential to provide 3-D scene information at a
more affordable price point than that of high-end laser-based
systems, which are often accompanied by RTK-GPS, e.g.
[2][3]. In stereo vision, the disparity, which is analogous to
depth, can be estimated densely and in real-time [4]. This
gives a direct description of the geometry of the scene and it
facilitates, for example, a separation of flat, drivable surfaces
from erect obstacles [5][6]. The Stixel World method [1]
is a state-of-the-art approach to analyze such a geometry
description of the scene. It is a fully probabilistic framework
to distinguish free space from obstacles in the disparity
signal, which can be implemented efficiently provided that
several assumptions are made. This framework is generally
more flexible and more robust than its predecessors.

A pitfall of the original Stixel World framework is that
it requires a disparity signal of a certain quality. However,
the quality of disparity estimation often degrades in cases
of occlusions, reflections or image regions with too little
texture information. Unfortunately, such degradations are
common in traffic scenery. As a result of this degraded signal,
the original Stixel World framework detects many false
obstacles, rendering the results useless for a practical system
under adverse conditions. An example of this is shown at the
top-left image of Fig. 1. In our recent work [7], we show that



the performance of such a disparity-based framework can be
improved by fusing color into the algorithm. This strategy
resolves many erroneous results of the disparity analysis at a
low additional computational cost, in contrast to alternative
solutions such as high-quality cameras or more advanced
disparity estimation techniques.

A key property of any ADAS is the response time, i.e.
the time delay between data acquisition and the response to
the result of the analysis. Since ADAS preferably need to
function at high vehicle speeds, the response time of such
systems should be as fast as possible. Hence, any delay
that can be removed from the critical path of the analysis
is beneficial to the value and applicability of the system,
provided that it does not degrade the reliability of the results.
Therefore, we will explore the possibility of removing the
disparity analysis from the critical system path. Although
fast disparity estimation methods exist [4][8], they typically
either rely on sub-optimal algorithms processing at a low
resolution, or they are based on customized hardware that
is not commonly available. To illustrate this, even in the
state-of-the-art system presented in [1], the dedicated FPGA
disparity estimation takes 40 ms per frame, whereas the stixel
analysis of the data takes 30 ms, when executed on a general,
high-quality multi-core CPU.

For these reasons, we will not rely on a strong fusion of
disparity and color in this work, even though the result pre-
sented in [7] clearly shows the qualitative benefits of that. In
contrast, we propose here to process the most recent camera
frame using an efficient color-only stixel segmentation. The
disparity estimation and analysis, which is only required for
our online color modeling, can be processed in parallel and
at a lower frame rate. Two examples of our novel color-only
stixel segmentation are shown at the bottom-left and bottom-
right image of Fig. 1, illustrating that we can achieve better
results than the state-of-the-art disparity approaches, even
with color modeling of a low complexity.

An alternative to online color modeling is offline color
modeling [9], which would completely remove the need for
online disparity estimation. However, we have a strong pref-
erence for an online learning approach, given the challenging
nature of traffic environments, which is full of varying
weather conditions, complex scenery, varying geographical
settings and highly dependent on the time of the day. For
instance, in low-light situations, urban traffic scenes tend
to contain predominantly gray-tones. We consider it more
feasible to build a robust, yet discriminating color model that
is tuned to that specific time and place, rather than building a
generic model that holds for every environment and weather
condition.

The remainder of this paper is structured as follows. First,
we will describe the probabilistic Stixel World framework
in Section II and explain briefly how it can be used with
disparity, color or both data signals. Then, in Section III,
we present the aspects of the system that will be evaluated
in this paper. We then describe our validation method and
the corresponding results in Sections IV and V, respectively.
Lastly, conclusions are provided in Section VI.

II. THE STIXEL WORLD

Let us now give a short overview of the general Stixel
World framework from [1], which we have used as a basis
of our work. The main goal of stixel segmentation is to find
the optimal labeling L∗ of vertically stacked, piecewise planar
ground or obstacle segments for input data D, which can be
any signal modality. Finding L∗ can be formulated as a MAP
estimation problem, as in

L∗ = argmax
L∈L

P(L|D), (1)

which can be solved efficiently using Dynamic Program-
ming. Using Bayes’ theorem and assuming, among others,
independence between columns and between data measure-
ments at individual pixels, the posterior probability can be
written as a chain of conditional probabilities by

P(L|D)∼
w−1

∏
u=0

P(Du|Lu) ·P(Lu). (2)

Here, u is the column index and w the image width. The
probability P(Lu) models a-priori world knowledge con-
straining the labeling, to avoid dispensable segments and
physically unlikely situations. This world model offers a
way to regularize the results for image-column optimality,
whereas the methods of [5] and [6] potentially lead to sub-
optimal results, since they mostly analyze data locally. The
details concerning P(L) are presented in [1]. Finally, the
likelihood of the data given a certain labeling, can be written
as

P(Du|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(dv|sn,v), (3)

where n is the segment index, Nu the number of segments
in Lu, and vb

n and vt
n the bottom and top row-index of

segment sn, respectively. This segment has a label ln ∈ {g,o},
representing the ground and obstacle classes, respectively.

The distribution P(dv|sn,v) in Eq. (3) represents the prob-
ability of a single valid data measurement dv at a certain
row v, assuming that it would belong to a potential segment
sn. The model for P(dv|sn,v) should reflect the nature of
the employed signal modalities. There are several relevant
approaches in literature. The authors of [1] employed a
dense stereo-disparity signal as the sole data modality. They
proposed to model P(dv|sn,v) as a mixture model, containing
a uniform distribution that models outliers and a Gaussian
distribution that models inliers, to assess how well the
measurement fits the potential segment for each class. For
ground segments, the expected disparity is a linear planar
surface and for obstacle segments a fronto-parallel surface.

A different approach is presented in [7], where the Stixel
framework is extended, such that it exploits both the dis-
parity signal and the color data. This strategy increases the
robustness of the system against adverse conditions such as
low light, bad weather, or a low-quality sensing system.
To this end, the authors redefine the likelihood term of
Eq. (3) to be P(Du,Cu|Lu) with the additional term P(cv|ln)
in the right-hand side of the equation, thereby treating color
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Fig. 2. A comparison between the existing and our proposed framework.
Previous systems [1][7] require disparity estimation in their critical path, in
contrast to our proposed system. Note that our disparity-supervised color
modeling in the lower part of the scheme can be lagging or run at a lower
frame rate than the critical path, by varying the range of the learning window.

and disparity as independent signals. Additionally, note that
this color posterior is assumed to be independent of the
segment location, since it only considers the class label
ln in contrast with disparity modeling. The color posterior
P(cv|ln) is learned in an online fashion using the labeling
of several preceding frames as training masks for both the
ground and obstacle classes. With these masks, normalized
color histograms are calculated, which are then transformed
to posteriors using Bayes’ rule.

In our subsequent research, we explore the feasibility
of segmenting the traffic scene images using a color-only
version of the Stixel World algorithm [10]. The benefit of
this approach is that the disparity estimation can be removed
from the critical system path, as illustrated in Fig. 2. In [10],
we present color modeling that is more suited for stand-alone
processing compared to [7], by making it distance-aware. To
this end, we have specified the color-based likelihood as

P(Cu|Lu)∼
Nu

∏
n=1

vt
n

∏
v=vb

n

P(cv|sn,v). (4)

The distance-aware color processing consists of two as-
pects: (a) weighing each pixel with its corresponding real-
world surface during the process of calculating the color
histograms, and (b) leveraging the regular and the distance-
weighted color posteriors based on v while evaluating Eq. (4).
This approach leads to a more balanced color analysis of far-
away and close-by image regions to cope with the inherent
geometric distortion of cameras in a robust way [10].

III. ONLINE COLOR MODELING EXPERIMENTS

The key contribution here is to perform an elaborate
analysis on the critical design choices of the online, distance-
aware, self-supervised learning framework, as presented
in [10]. The framework processes preceding stereo frames
and generates a free-space vs. obstacle labeling based on
disparity. Consecutively, this labeling is exploited as self-
supervised training masks for the color representation of
these two classes. The relevant design choices concern the
color representation, consisting of preprocessing and color
space selection, and the selection of the frames in the
learning window.

A. Color Representation

Several aspects of the color representation are kept con-
stant throughout this paper. First, we employ the median-cut
algorithm on the frames in the learning window [11]. This
ensures that we have an adaptive color representation that
has both a sufficiently low complexity for fast processing
and is still suitable for the current traffic scene, as the color
reduction is performed online. Second, we perform a further
reduction of the data by employing stixels that span 11 image
columns. This increases the robustness and decreases the
computational load at the cost of horizontal resolution in
the labeling. To condense the image data into a single stixel-
data vector, we calculate the first and the second mode of an
11×11 pixel window in the color data, horizontally centered
at the central image column of the corresponding stixel.
These aspects are recommended approaches as presented
in [7] and [10]. Let us now briefly describe the evaluated
color settings.

1) HEQ: We test the added value of performing His-
togram Equalization on the raw RGB images (separately on
each color plane) prior to converting it to a different color
space.

2) RGB: We employ RGB as the full-color reference
color space.

3) HS: To increase the robustness against varying lighting
conditions, we test the strength of the Hue and Saturation
dimensions of the HSV color space in our proposed frame-
work.

4) IllumInv: The Illuminant Invariant color space pre-
sented in [12] is a more elaborate method for robust handling
of changing lighting conditions and even shadows. It requires
an automated offline camera-calibration method to find a
parameter θ , which can then be used to transform each
new image into an illuminant-invariant gray-scale image. We
have adopted the proposed robust entropy-based calibration
method and found that θ = 90± 0.5◦ for our camera, but
refer explicitly to [12] for more details on this color space
and calibration method.

5) Gray: We also execute our segmentation on a gray-
scale representation as a baseline for extreme cases of
monochrome lighting conditions. Moreover, it would signifi-
cantly reduce the constraints on the camera hardware and the
corresponding data bandwidth when the gray-scale analysis
is successful.



B. Learning Window

As described earlier, our method exploits preceding frames
(which are analyzed based on their disparity signal) as
Learning Window (LW) to construct color models of the
obstacle and ground classes. The settings of a LW are the
oldest frame, counting backwards from the current one, the
step size and the final frame to be considered, annotated ’LW
start:step:end’. The recommended approach in [7] relies on
the 10 most recent preceding frames (LW10:1:1), which we
will use as a reference setting. Since the aim of this work is to
reduce the computational complexity and, most importantly,
the system latency, we experiment with two alternative frame
selections. First, we test a learning window without the two
most recent frames (LW10:1:3). This way, the color model
lags by two frames but it allows a longer data investigation
interval before it is required for the analysis. Second, we test
the more extreme case that has a lower frame rate and a lag,
by only considering frames t−9, t−6 and t−3 (LW9:3:3).

Analogous to [10], we generate class-posterior color dis-
tributions from the labeled pixels in the LW frames and apply
distance-aware weighting to correct the geometric distortion
in the imaging process.

IV. EXPERIMENTS

To evaluate the different design settings, we employ two
publicly available stereo RGB data sets with 188 annotated
test frames in total [7][10]. The data consists of a large
variety of relevant traffic situations under both good and
adverse imaging conditions, such as dark roads with cyclists
and cars, road repair sites, highway scenes etc. Both images
with bright weather and under dim, clouded or even rainy
conditions are present, leading to many low-contrast regions
that are especially difficult for disparity-based methods.
All frames are captured with a BumbleBee2 stereo camera
(baseline: 12 cm; resolution: 1024×768 pixels; frame rate:
20 Hz), which is a relatively basic, low-cost camera when
compared to several high-end or custom models used in other
set-ups [1][13]. The details of our employed SGBM disparity
estimation [14] and several improvements that we made for
the baseline system are provided in [7] and [10]. Note that
we cannot execute our algorithm on benchmarks such as the
KITTI dataset [15], since those, unfortunately, do not contain
the required preceding frames of annotated road images.

V. RESULTS

We have tested all combinations of the selected color and
learning window settings, resulting in 24 different executions
(runs). The effect of the individual color and learning win-
dow settings is shown in Fig. 3, by means of a box plot.
Using a paired t-test, applying HEQ provides a significant
improvement over not using equalization (p = 3.04×10−8).
Likewise, the RGB color space outperforms the HS, IllumInv
and Gray representations (p = 1.12×10−18, p = 1.93×10−4

and p = 1.85× 10−29, respectively), and a full learning
window (LW10:1:1) is better than a shorter, lagging one
(LW10:1:3) with p = 3.25×10−3. No significant difference
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Fig. 3. Box plots comparing the different settings over all runs. For each
frame in each run, the percentage of stixels with a correct free-space estimate
is calculated, which is visualized as a box plot per setting. Hence, each box
contains 188 data points per run. The number of runs per box is denoted in
brackets in each label.

was found between the results of using the full or low frame-
rate learning window (LW9:3:3) (p = 8.33×10−1).

Additional quantitative results are provided in Fig. 5. In
this figure, all stixels over all frames are evaluated together
for each run individually. For each stixel, a free-space
evaluation is performed, by comparing the detected free
space by the true free space, generated from the ground-truth
annotations. We calculate the deviation as a percentage of the
true free space. For robustness reasons, free-space detections
are counted as correct when they are within the range of 30%
too short or 15% too long. This asymmetrical range reflects
the fact that missing an obstacle is more dangerous than
detecting one too close. For the same reason, we distinguish
the incorrect stixels into obstacle misses (free space is too
long) and false obstacle detections (free space too short).
Although a deviation of 30% may seem a large fraction, it
corresponds to only a few pixels after several meters and
only some centimeters before that. The results are shown
on the combined data as well as on the individual datasets.
The rightmost graph in Fig. 5 clearly shows that the added
value of color processing is more pronounced for the EHV-
road-ITSC15 data. This can be explained by the fact that
the EHV-road-ITSC14 contains both frames with bright and
dim lighting conditions, whereas EHV-road-ITSC15 is solely
focused on dark, clouded, low-light and rainy frames. These
situations are specifically difficult for disparity-based meth-
ods, rendering color data more advantageous. Of all color
settings, Run f results in the highest percentage of correctly
detected free-space (77.64%, averaged over all data), which
is similar to the disparity-only method (77.25%). For the
EHV-road-ITSC15 data, the improvement is higher: 78.01%
compared to 74.39%. When specifically focusing on reducing
the number of missed obstacles in difficult imaging condi-
tions, Run h reduces the percentage of erroneous stixels from
17.18% to 12.85%, compared to the disparity-only method.
On the combined data, the stixel-error fraction reduces from
13.81% to 11.52%.

We provide additional analysis by means of five theoretical
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Fig. 4. Qualitative results of the disparity method and three of our runs on six stereo frames. Each subfigure contains two input and four result images.
The top left and middle images show the rectified and cropped left camera image and the corresponding disparity image. Next to that, the disparity baseline
result is shown, where the stixel segments are colored by their distance (red (close) to blue (far)). The three bottom result images illustrate different
color settings, from left to right: RGB+HEQ with LW10:1:1, IllumInv+HEQ with LW10:1:1 and Gray+HEQ with LW9:3:3. In the color-only results, a
homogeneous overlay of the detected obstacle region is visualized. The bright green line indicates the border of the ground-truth annotation of the drivable
surface. Subfigures a, c and e show that our color-only results provide similar or better results in various situations. The right column (b, d and f) shows
examples of scenes where not all color settings provide equally acceptable results.

runs at the bottom of Fig. 5. These scores are generated
by selecting the optimal setting for each frame out of a
(subset of) the available runs, to assess the added value
of the processing choices and to provide insights in where
the most gain is to be expected in future research. First of
all, it is noteworthy that for every setting, there are frames
in the data set on which it performs best. If the optimal
score is selected from all possible runs (including disparity),
the highest theoretical score can be achieved (86% correct),
as could be expected. However, also with the color data
alone there is room for improvement, compared to using the
same color space and preprocessing step for every frame.
So, even with our adaptive median-cut color indexing, the
system can extract more information from different color
representations in different situations (fourth bar from below
in Fig. 5; 83% correct). Also, note that even with the simplest
learning window (LW9:3:3), the color-only Stixel World can
outperform the disparity one with a more sophisticated color
representation (the bottom bar in Fig. 5; 80% correct), even
though using more frames is still better (third bar from below
in Fig. 5; 82% correct).

The aforementioned observations are illustrated with the
qualitative results in Fig. 4, where the disparity-only results
are compared to three of our color-only strategies. We show
the setting that performed best (RGB+HEQ, LW10:1:1), one

of the runs that relied on the color space that was specifi-
cally designed for this context (IllumInv+HEQ, LW10:1:1),
and the results with the lowest computational complexity,
since it uses gray-scale images and only three LW frames
(GRAY+HEQ, LW9:3:3). The left three images show that our
methods are all capable of delivering similar or better results
than the disparity-only framework. The images in the right
column of Fig. 4 illustrate that different settings perform best
in different situations, so that the system performance could
be increased by adapting the color modeling in even more
ways than we currently do. For example, color spaces may be
combined or selected online, or the most informative frames
within the learning window could be selected adaptively.
Metrics and methods guiding this online decision-process
will be investigated in future research.

VI. CONCLUSIONS

We have explored a stixel-based probabilistic framework
for color-based free-space vs. obstacle segmentation. Our
system learns color appearance models for free-space and
obstacle classes in an online and self-supervised fashion. To
this end, it applies a disparity-based segmentation, which
can run in the background of the critical system path and
at a lower frame rate than the color-based algorithm. As a
bonus, this approach enables operation without a real-time
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Fig. 5. Quantitative results of free-space segmentation for the baseline that use disparity alone (a) [1] or strongly fused color and disparity (b) [7], and all
of our runs. The labels show if histogram equalization (HEQ) is applied, which color space is used and which frames are in the learning window (LW).
The learning window parameters are indicated with LW start:step:end as before. The final four entries are theoretical optima, generated by selecting the
optimal setting for each frame out of all runs (a-z, including disparity), out of all color-only runs alone (c-z), out of all runs with LW10:1:1 (c, f, ..., x),
out of all runs with RGB (c-h) and out of all runs with LW9:3:3 (e, h, ..., z). They give an approximate upper bound for the current processing framework,
which could be achieved by, e.g., online selection of color spaces.

disparity estimate. Consequently, the current road scene can
be analyzed without the extra latency of disparity estimation.
This feature results into a reduced response time from data
acquisition to data analysis, which is a critical property for
high-speed ADAS.

To achieve reliable color-only free-space detection, we
have experimented with several color spaces and different
online learning settings. Our evaluation on publicly avail-
able data shows that the color-based analysis can achieve
similar or even better results in difficult imaging conditions,
compared to the state-of-the-art disparity-only method. As an
illustrative example, our color-processing detects the correct
free-space for 77.6% of all stixels, compared to the disparity-
only score of 77.3%. Furthermore, our color-only method
results in 4.3% less stixels with missed obstacles on the most
challenging data set.

Besides the previous system aspects, the provided meta-
analysis of the results shows that our approach of online
color modeling is beneficial and can be extended for further
improvements, with potential scores of up to 82% within the
currently assessed parameter-setting space.
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